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Numerical simulation of viscous flow interaction
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SUMMARY

A numerical fluid–structure interaction model is developed for the analysis of viscous flow over elastic
membrane structures. The Navier–Stokes equations are discretized on a moving body-fitted unstructured
triangular grid using the finite volume method, taking into account grid non-orthogonality, and imple-
menting the SIMPLE algorithm for pressure solution, power law implicit differencing and Rhie–Chow
explicit mass flux interpolations. The membrane is discretized as a set of links that coincide with a subset
of the fluid mesh edges. A new model is introduced to distribute local and global elastic effects to aid
stability of the structure model and damping effects are also included. A pseudo-structural approach using
a balance of mesh edge spring tensions and cell internal pressures controls the motion of fluid mesh nodes
based on the displacements of the membrane.

Following initial validation, the model is applied to the case of a two-dimensional membrane pinned
at both ends at an angle of attack of 4◦ to the oncoming flow, at a Reynolds number based on the chord
length of 4×103. A series of tests on membranes of different elastic stiffness investigates their unsteady
movements over time. The membranes of higher elastic stiffness adopt a stable equilibrium shape, while
the membrane of lowest elastic stiffness demonstrates unstable interactions between its inflated shape and
the resulting unsteady wake. These unstable effects are shown to be significantly magnified by the flexible
nature of the membrane compared with a rigid surface of the same average shape. Copyright q 2007
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Coupled membrane–fluid systems are found in many fields of scientific design and research such
as heart valves [1], blood cells [2], parachutes [3], airbags [4], sails [5], membrane airfoils for
micro-air vehicles [6] and lightweight fabric building structures [7].
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The investigation of this highly coupled fluid–structure system presents a significant challenge
to both experimental and numerical fluid dynamicists. One significant characteristic of the system
is the flexibility of the membrane, which causes it to undergo large displacements and deformations
under the applied fluid load. Since the membrane represents an internal (most often impermeable)
boundary to the flow, as its shape changes, the flow around the membrane changes, thus altering
the forces on the membrane in a continuous feedback loop. Separation from the curved membrane
surface may occur which also changes the forces on the structure. These effects may eventually
combine to cause the membrane and flow regime to come into equilibrium in a steady stable state,
or alternatively non-steady behaviour could result, which may be composed of many superimposed
structural modes interacting with a highly unsteady wake.

Coupled membrane–fluid dynamics is difficult to investigate experimentally. Significant chal-
lenges include the application of structure boundary conditions, for example, a fixed leading edge,
without disturbing flow in the vicinity, and instrumentation of the model without interfering with
the flexibility of the surface. In a numerical investigation, in addition to the realistic reproduction of
the behaviour of each system (fluid and structure) the accurate modelling of the interactions at the
interface between the two media is of the utmost importance to ensure global energy conservation
of the coupled system. The fluid numerical model must be suitable for simulations with complex-
shaped moving boundaries, thus employing in general either a body-fitted moving grid [8], or a
stationary Eulerian approach such as the immersed boundary method [9]. Algebraic mesh moving
methods relate the motion of the internal mesh nodes to the motion of the boundary nodes via
an algebraic expression, for example, using a master/slave strategy [10]. Alternatively, the mesh
may be considered to be a structure in its own right, and a solution to the equations of elasticity
sought, as in the pseudo-solid approach [11], or a discrete spring analogy may be used [12, 13].
Suitable distribution of computational nodes is required to capture the relevant detail of the flow,
and if a body-fitted grid is used a grid moving technique that maintains grid quality over time is
required. The structure material model must be suitable for large strains and may be required to
incorporate non-linear material characteristics, for example, in the case of a woven sail fabric.

Considering the coupled system, if non-matching grids are used an interpolation at the interface
must be carefully designed to transfer information between the two sets of data—fluid to structure
and structure to fluid. Time dependency of the system presents a further challenge since the method
must accurately render the unsteady coupled interactions. The popular approach of a quasi-unsteady
analysis [14, 15], in which sail inertia is neglected and a static equilibrium shape found within
each timestep is unlikely to be suitable since the fluid ‘sees’ the structure as a rigid stationary
body in its current configuration. In the present case, however, due to the relatively low mass of
the membrane, not only its position but also its velocity (rate of change of position) is significant,
neither of which are known a priori, but instead must be found as part of the solution.

Many researchers have taken advantage of the reduced computational complexity offered by
potential flow-based methods, such as the vortex lattice method, to tackle the modelling of
membrane–fluid systems. In these cases the effects of viscosity are neglected [15, 16], which
restricts the model to cases where boundary layer effects such as separation are unlikely to be
significant. Alternatively, additional assumptions or empirical information are used to provide a
‘viscous correction’, for example, to model a leading edge separation bubble [17], or trailing
edge separation [18]. Most often this requires additional assumptions to be made about the flow,
for example, that the boundary layer remains attached downstream of the leading edge separa-
tion bubble or that the oncoming flow is tangential to the leading edge of the membrane (ideal
incidence).
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For small angles of attack and membranes of small camber (due to small excess length
ratio) viscous effects play a less significant role since large regions of separated flow do not
occur. In these cases reasonable agreement between potential flow-based models and experi-
mental data has been found [19]. However, outside of these tolerances the results rapidly deviate
from the potential flow-based predictions. Significant discrepancies in force coefficients even for
membranes of small camber only a few degrees from zero angle of attack have been found
[19]. As highlighted by Newman [20], these discrepancies are widely accepted to be due to
viscous effects.

While the presence of viscosity will induce shear stresses on the surface of the membrane thus
altering its tension, the more significant boundary layer effect is the change in surface pressure
distribution. The second effect is more significant because the pressure distribution, or more
specifically the net pressure difference between the membrane’s upper and lower surface, has more
influence over the membrane shape.

2. NUMERICAL MODEL

In these two-dimensional analyses an unstructured triangular grid [21] is used to enable the
complex-shaped domain to be meshed in a relatively straightforward manner, with no special mesh
treatment required at the boundary. All computational volumes have the same topology, which
simplifies the data structure and computer code. An unstructured approach also allows mesh nodes
to be concentrated in regions of interest easily and efficiently, such as in the boundary layer near
the membrane. A collocated finite volume method is used to discretize the fluid equations of
motion. The structure is discretized as a set of one-dimensional straight links in a Lagrangian
approach. The motion of the fluid–structure boundary causes motion of all mesh nodes so that the
mesh adapts and remains fitted to the boundary. This approach ensures that the topology of the
mesh remains constant throughout the simulation, and so neighbour finding routines, which are
computationally expensive on unstructured meshes, are only carried out once at the beginning of
the simulation. Furthermore, re-meshing of the domain is avoided, which is also computationally
expensive and can introduce errors during the interpolation of the flow field from one mesh to the
next.

2.1. Discretization of the fluid equations of motion

The differential equations of motion describing the unsteady flow of an incompressible Newtonian
fluid are

�
�U
�t

+�∇ ·(UU)=�∇2U−∇ p (1)

and

∇ ·U=0 (2)

in which � is the density and � is the dynamic viscosity of the fluid, U is the vector of fluid
velocity, p is the pressure and t is the time. If the point of interest, P , at which the equations of
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motion are evaluated, is moving with an arbitrary velocity W, then the momentum equation (1)
contains an extra term:

�
�U
�t

+�∇ ·(UU)−�W·(∇U)=�∇2U−∇ p (3)

The continuity equation (2) remains unchanged. The temporal derivative in Equation (1) is the rate
of change seen by a ‘stationary’ observer. The temporal derivative in Equation (3) is the rate of
change as seen by an observer moving with the velocity vector field W. The two derivatives are
related according to

�(U)

�t
= �(U)

�t
+W·(U) (4)

which has been used in the derivation of Equation (3).
Following the finite volume approach, the momentum equations (3) are integrated over a moving

triangular control volume shown in Figure 1. The unknown variables of pressure and two compo-
nents of velocity are stored at its moving centroid and are considered to represent the average over
the control volume, thus Equation (3) gives

�
d

dt

(∫
V
UdV

)
+�

∫
V

∇ ·((U−W)U)dV =�
∫
V

∇2UdV −
∫
V

∇ pdV (5)

in which the time-dependent term integral

�
∫
V

�U
�t

dV =�
d

dt

(∫
V
UdV

)
−�

∫
V
U

�(dV )

�t
(6)

the vector identity

W·(∇U)=∇ ·(WU)−(∇ ·W)U (7)

and the definition of volumetric strain

�(dV )

�t
=(∇ ·W)dV (8)

have all been used for simplification. After further simplification using the divergence theorem,
Equation (5) becomes

�
d

dt

(∫
V
UdV

)
+�

∫
S
dS·((U−W)U)=�

∫
S
dS·(∇U)−

∫
S
pdS (9)

the x-component of which can be expressed as

�
d

dt

(∫
V
Ux dV

)
+�

∫
S
((U−W)Ux )dS=�

∫
S
(∇Ux )dS−

∫
S
pidS (10)

in which Ux is the component of velocity in the x-direction.
The time-dependent term is discretized using a first-order backward Euler stencil:

�
d

dt

(∫
V
Ux dV

)
∼=�

(
V t+1Uxt+1 −V tUxt

�t

)
P

(11)
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Figure 1. Triangular fluid control volume with neighbour volumes and associated geometry.

The convection term is simplified using the midpoint rule to convert the surface integral to a
discrete sum over the volume faces, and then linearized by treating the mass flux through the face
explicitly, giving the convective flux through one face as

�A f U
x
f ((U f −W f ) ·n f )=m f U

x
f (12)

in which the explicit flux m f is calculated using the Rhie–Chow interpolation [22] as described
shortly.

The diffusion term is simplified using the midpoint rule to convert the surface integral to a
discrete sum over the volume faces, and then the correction of Muzaferija [23] is applied to take
into account the non-orthogonality of the grid, giving the diffusive flux through one face as

�A f ((∇Ux ) f ·n f )=�A f

[(
Ux

N −Ux
P

|D f |
)

(d f ·n f )+((∇Ux ) f −((∇Ux ) f ·d f )d f ) ·n f

]
(13)

where the overbar terms are linearly interpolated from the computational nodes either side of the
face, the control volume centre node gradient terms are calculated using the divergence theorem:

(∇Ux )P = 1

VP

∑
f
U x

f S f (14)

and d is the unit vector between P and its neighbour N across side f

d f = D f

|D f | (15)

in which D f is as defined in Figure 1. The second term in the square brackets in Equation (13) is
treated explicitly.

The pressure gradient term is simplified using the midpoint rule, the contribution of one face
to the resulting discrete sum is

p f (i·S f )= p f A f n
x
f (16)

To complete the discretization, the power law scheme is used to interpolate the unknown face
velocity in Equation (12) according to the local Peclet number of the control volume face, which
is defined as

Pe f = m f |DPN |
�A f (d f ·n f )

(17)
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The x-direction component of the discretized momentum equations is now given by

aPU
x
P =∑

f
aNU

x
N +bP (18)

in which

aN = �A f

|DPN | (d f ·n f )g(|Pe f |)+max(0,−m f ) (18a)

aP = �VP

�t
+∑

f
(aN +m f ) (18b)

bP = �VPUxt
P

�t
+�

∑
f
A f D

x
cross−

∑
f
p f A f n

x
f (18c)

where

g(|Pe f |)=max(0, (1−0.1|Pe f |)5) (19)

in which |Pe f | is the magnitude of the face Peclet number defined in Equation (17), and

(Dx
cross) f =((∇Ux ) f ·n f )−((∇Ux ) f ·d f )(n f ·d f ) (20)

is the explicit cross-diffusion correction from Equation (13).
The explicit mass flux term in Equation (12) is calculated using the Rhie–Chow method [22]

which interpolates the pressure and velocity terms independently

m f =�A f ((U f −W f ) ·n f )+�A f

[
VP

aP

]
f
(([(∇ p)P ] f −(∇ p) f ) ·n f ) (21)

in which aP is as defined in Equation (18a), the overbar again represents linear interpolation, and
the centre node gradient terms are calculated according to Equation (14). The direct face pressure
gradient is evaluated as

(∇ p) f =
(
pN − pp
|DPN |

)
dPN (22)

It is clear that Equation (8) represents a differential form of the integral geometric conservation
law [24], and its satisfaction has been implied in the simplifications applied to the integration
of Equation (3). Furthermore, the convective fluxes are evaluated at the midpoint between t
and t+1 which is consistent with the first-order backward time differencing and midpoint rule
approximations used here [25].

The SIMPLE algorithm of Patankar and Spalding [26] is used to introduce a pressure correction
equation using the equation of conservation of mass (continuity equation) equation (2). The
velocities found from solution of the momentum equations (18) will in general, during the solution
procedure, not satisfy continuity of mass since the divergence-free condition is not implied in the
momentum equations and the pressure field used in their calculation is treated explicitly. If the
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velocities and pressures are considered to be made up of an initial guess and a correction, the
discretized continuity equation (2) becomes

aPp′ p′
P =∑

N
aNp′ p′

N +bPp′ (23)

where p′ is the pressure correction required, and the following coefficients apply:

aNp′ = A f

[
VP

aP

]
f

(
dPN ·n f

|DN P |
)

(23a)

aPp′ =∑
N
aNp′ (23b)

bPp′ =−∑
f
A f (U∗

f ·n f ) (23c)

Considering the definition of face mass fluxes, the pressure correction source term equation (23c)
can be considered as

bPp′ =−1

�

∑
f
m∗

f (24)

Since the mass fluxes in Equation (24) are evaluated using interpolated velocities, the Rhie–Chow
correction described previously is also used here.

Once Equation (23) has been solved for the pressure corrections, the velocity corrections are
calculated by

u′
P =−VP

aP
((∇ p′)P ·i) (25)

wherein the method equivalent to Equation (14) is used for the evaluation of pressure correction
gradients. The velocities and pressure are then corrected according to

UP =U∗
P +U′

P (26a)

and

pp = p∗
P + p′

P (26b)

where the star indicates a ‘guessed’ variable, in this case the velocity found after solution of the
momentum equations and the pressure used for that solution.

An iterative approach to the solution of the momentum equations (18) is adopted. To aid stability,
the velocities are over-relaxed:

ut+1
P =(1−�vel)u

t
P +�vel

[∑
N aNuN +bP

aP

]
(27)

where �vel is the velocity over-relaxation factor, chosen between 0 and 1, which effectively finds
the new velocity as a blend of the velocity at the previous timestep and the velocity calculated by
Equation (18). The same factor is used for both x- and y-momentum calculations. The velocity
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relaxation is duly taken into account in the calculation of the explicit Rhie–Chow mass fluxes as
described previously where Equation (21) becomes

m f =�A f (U f ·n f )=�A f (U f ·n f )+�A f �vel

[
Vp

aP

]
f
[(((∇ p)P) f −(∇ p) f ) ·n f ] (28)

and in the calculation of the velocity corrections where Equation (25) becomes

u′
P =−�vel

VP

ap

(
�p′

�x

)
P

(29)

The correction to the pressure is under-relaxed to compensate for the simplifying assumptions
made in the formulation of the pressure correction equation. Equation (26b) becomes

pP = p∗
P +�p p

′
P (30)

where �p is the pressure under-relaxation factor that damps the rate of change of the pressure
field.

Conditions on velocities and pressure at the boundaries of the domain are imposed through the
use of ‘mirror nodes’; a fictitious node outside the domain boundary, one for each boundary fluid
control volume. The value of the variable at the mirror node is set so that interpolations to the
face of the volume on the boundary produce the required condition. The boundary node is located
such that the vector PN on that side passes through the centre of the boundary face in order to
maximize the accuracy of the midpoint rule approximations. The non-orthogonalities are taken
into account in the same manner as for internal volume faces.

2.2. Discretization of the structure equations of motion

The structure is discretized as a set of straight links with zero thickness, which is a sub-set of
the fluid mesh edges. A Lagrangian approach is taken in which the structure mass is lumped at
the link nodes and a spring and dashpot system connects the nodes together in a chain along the
length of the membrane. Considering the equilibrium of a structure node shown in Figure 2:

MP

(
Ẋt+1

P −Ẋt
P

�t

)
=RP (31)

in which MP is the mass, XP the coordinates and RP the out of balance force associated with
structure node P . The resultant force R is made up of internal structure forces and external applied
fluid forces. Internal structure forces are those due to the elastic deformation of the structure and
those due to internal damping of its motion.

The internal elastic forces are evaluated by considering the deformations of the structure from
its original (unstressed state) to determine the tension in each structure segment. To aid stability,
a new elasticity model is introduced which uses a blend of local and global elastic effects at each
structure node:

T e = T e
local+T e

global

= E A

[
�
LPN −L0

PN

L0
PN

+(1−�)
L−L0

L0

]
(32)
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nPN neighbour unit vector P to N
TPN tension in link PN
RP resultant force on node P

P

N0

nP1

nP0 RPTP0

LP0

LP1

TP1

N1

Figure 2. Structure computational node and associated geometry.

in which EA is the product of the material elastic modulus and the cross-sectional area of the
discrete link connecting P to neighbour node N , and LPN and L0

PN are the current and unstressed
length of that link. L and L0 are the current and unstressed length of the membrane as a whole,
and � is a blending factor equal to 1/n where n is the discretization of the membrane.

The internal damping force is evaluated by considering the relative velocity between the two
ends of the structure segment at P and N . The damping contribution to structure segment tension
is

T d=C(ẊN −ẊP) ·nPN (33)

in which C is a damping coefficient and nPN is the unit vector between P and N (see Figure 2).
The external applied forces are those due to the actions of the fluid on the membrane and are

made up of a pressure component and a viscous component. To be conservative in this interface
interaction, the force applied to a given structure segment must be equal and opposite to that
felt by the adjacent fluid control volume due to the presence of the structure. This is achieved
by recording the force applied to this control volume face during the solution of the momentum
equations (18) in both x- and y-directions. Equal and opposite forces are thus taken to act on the
structure segment coincident with this control volume face, and these force components are then
interpolated to the structure nodes at either end of the segment.

Once the resultant force on a given structure node has been evaluated (both internal and external
effects), Equation (31) is solved to find the new nodal velocity, and the coordinates of the node
are updated according to

xt+1
P = xtP +�t ẋ t+1

P (34a)

and

yt+1
P = ytP +�t ẏt+1

P (34b)

in which [x, y] and [ẋ, ẏ] are, respectively, the coordinates and velocities of structure node P in
the component form.

2.3. Mesh motion control

As the structure position is updated each timestep, so the fluid mesh nodes must also be updated
to maintain a body-fitted mesh of sufficient quality. A pseudo-structural approach is used here to
control mesh motion in which the membrane structure displacements drive a system of equations
describing the equilibrium of each mesh node. The change in position of the mesh nodes is
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Figure 3. Mesh triangle geometry relating to mesh moving algorithm.

calculated in a similar manner to the motion of the structure nodes considering the links of the
mesh to be structural elements. The resultant force at each mesh node RP contains terms relating
only to the deformation of the mesh. The material model used to derive these internal mesh forces
from the mesh deformations is fictitious, and can be manipulated to control the performance of
the mesh as desired. In this work the mesh forces have an edge tension component and a shape
component as follows.

The edge tension component is found by considering each link of the mesh to be a linear elastic
spring having a constant tension coefficient (CT), which relates the tension in the link to its length.
Considering node 0 in Figure 3

T0=CTA0 (35)

The overall effect of a constant tension coefficient (corresponding to a zero slack length) is to
cause the mesh node to move towards the geometric centre of all the nodes to which it is connected
by a mesh link.

The shape force is evaluated triangle by triangle, and its components applied to each apex node
in turn. In the component form, for the mesh triangle shown in Figure 3, the shape forces at node
0 are

Fx
0 =CS

[
2

S

(
x1−x0
A2

+ x2−x0
A1

)
− y2− y1

2V

]
(36a)

and

Fy
0 =CS

[
2

S

(
y1− y0
A2

+ y2− y0
A1

)
− x2−x1

2V

]
(36b)

in which x0, y0, etc. are the coordinates of the triangle nodes, V is the triangle volume, A0, etc.
are the triangle face areas and S is the triangle perimeter. CS is a constant shape coefficient. The
first term in square brackets in Equations (36a) and (36b) has the effect of moving the nodes
towards minimizing the difference in length between the three sides of the triangle. The second
term represents the resultant at the node of an internal pressure in the triangle which is inversely
proportional to its volume, thus when the effects of all triangles meeting at node 0 are taken into
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account, the resultant effect is to move node 0 in such a way as to reduce differences in volumes
between these triangles. This second term provides the mesh with a compressive resistance. Use
of the edge tension coefficient controls mesh motion and the shape coefficient ensures that no zero
area triangles occur in the mesh.

Once the tensions in all the mesh links meeting at mesh node P and the shape forces due to all
the mesh triangles meeting at mesh node P are known, the resultant force at P can be evaluated
and the change in mesh nodal positions are given by

�xt+1
P =�m

Rx
P

KP
+�m�xtP (37a)

and

�yt+1
P =�m

Ry
P

KP
+�m�ytP (37b)

in which �m and �m are mesh iteration relaxation factors. The nodal stiffness KP also consists of
an edge component and a shape component given, referring again to node 0 in Figure 3, by

K0=CT+ 10CS

4

[
2

S2A1A2
(2A2

1+2A2
2+A0(A1+A2−A0))+ 2A2

0

4V 2

]
(38)

The positions of mesh nodes not coincident with any domain boundary (including the membrane
structure) are then updated accordingly. The mesh motion equations are solved iteratively until
a predefined level of static equilibrium (judged according to the kinetic energy of the mesh) is
reached. Thus, the mesh ‘material’ parameters CT and CS determine the response of the mesh
elements to deformation, and the mesh iteration parameters �m and �m control the convergence of
the mesh into its equilibrium position.

Overall, an iterative approach is taken to the solution of each equation set. The structure, mesh
and then fluid equations of motion are solved in a sequentially staggered manner, projecting each
system in turn forward in time. An unsteady approach is used, which tracks the interactions of the
fluid and the structure over time; complex unsteady motions will be observed and a stable static
shape may or may not be found in each case.

3. RESULTS

3.1. Validation tests

The test case of flow past a normal flat plate is used to test the ability of the approach to model a
zero thickness internal boundary (including a significant pressure difference across the boundary),
separation of the flow with regions of strong recirculation, evaluation of forces on an internal
structure in the flow and to evaluate the accuracy of the algorithm on stationary and moving meshes
in both steady and unsteady formulations.

A flat rigid plate of zero thickness is held normal to a uniform flow as shown in Figure 4.
The Reynolds number is defined with respect to the plate height, and a selection of cases in the
range Re=1.2–18 are studied. The length of the recirculating vortices, as shown in Figure 4,
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Figure 4. Domain geometry, boundary conditions and wake parameters for flow
past a normal flat plate test cases.

non-dimensionalized with respect to the plate height, and the drag forces felt by the plate are
compared with the available data. The drag coefficient is defined as

CD= 2Fx

�u2max
(39)

where Fx is the net force on the plate in the x-direction.
Owing to its zero thickness, the flat plate experiences only pressure drag (or form drag) induced

by the pressure difference between its two sides. The mesh has 28 elements on each face of the
plate, which gives 19 872 elements in total. The meshes are refined in the area around the tips
of the plate and in the wake by placing extra mesh edges there in the mesh generating process.
The velocity over-relaxation factor is 0.8 (Equation (27)), the under-relaxation factor on pressure
update is 0.02 (Equation (30)) and the non-dimensional timestep is 0.25. The initial conditions
are zero pressure and maximum oncoming velocity at all internal nodes. The no-slip condition is
imposed on the mesh edges coincident with the plate.

Figure 5 shows the variation of non-dimensionalized eddy length with Reynolds number, in
comparison with published data; the results demonstrate a clear agreement, particularly with the
work of Hudson and Dennis [27] and Dennis et al. [28], who use a finite difference approach on
a polar grid, in a primitive variable and stream function–vorticity formulation, respectively. The
variation of drag coefficient with Reynolds number is shown in Figure 6, also demonstrating good
agreement with published data.

Next an arbitrary mesh motion is imposed during the solution in order to test the effect of errors
in geometric conservation. In a case such as this with distinct separation and recirculation, such
errors could have a significant impact on the flow structure and therefore also on the forces felt
by the plate.

The arbitrary mesh motion is generated by superimposing a random time-varying perturbation
on all internal mesh nodes, the maximum perturbation being 30% of the smallest mesh edge
length to avoid mesh tangling. Over time, no net translation of the control volumes occurs, and
the movement can be thought of as a vibration of the mesh edges causing distortion of the control
volumes. This is a harsh mesh motion test, since the motion of any one mesh edge is completely
independent of the motion of the edges around it, and is independent from one iteration or timestep
to the next.

The Reynolds number 18 flow is modelled with the same initial and boundary conditions,
relaxation parameters and timestep as the stationary mesh case described previously. Both steady
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Figure 6. Variation of drag coefficient with Re, flow past a normal flat plate. Comparison with data from
Ingham et al. [31] and Dennis et al. [28].

and unsteady formulations are used; in the steady formulation, the mesh motion is imposed on
each iteration, in the unsteady formulation, the nodes are moved at the beginning of each timestep.

The drag coefficient, as defined by Equation (39) is monitored, for both the steady and unsteady
formulations on both the stationary and arbitrarily moving meshes. Excellent agreement is demon-
strated between the steady and unsteady formulations, and between the stationary and moving
mesh cases with all four cases giving a value CD=2.29–2.30.

3.2. Elastic membrane cases

The model described in Section 2 and validated in Section 3.1 is applied to the two-dimensional
test case of modelling the unsteady motions of an elastic membrane moving from an initial flat
and unstressed state to a curved profile as a result of the aerodynamic forces on the membrane.
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Figure 7. Domain geometry, boundary conditions and membrane parameters for flow around an elastic
membrane test cases, including global and local coordinate system definitions.

An angle of attack of 4◦ is used and the Reynolds number is based on the chord length, c, of the
membrane (the distance between its two fixed ends):

Re= �Uc

�
(40)

in which � is the fluid density, U is the oncoming flow velocity and � the fluid viscosity. The
Reynolds number of the problem here is set to 4000 and the computational domain and boundary
conditions are shown in Figure 7.

Following Shyy and Smith [8], an additional non-dimensional parameter is introduced describing
the relative stiffness of the membrane:

�= 3

√
E A

q∞c
(41)

in which q∞ is the stagnation pressure of the flow defined as

q∞ = 1
2�U

2 (42)

Internal damping of 1% of critical is applied (Equation (33)), and the damping factor C is calculated
according to

C=0.02
√
sPN MP (43)

where sPN is the axial stiffness of the membrane segment:

sPN = E An

L0
(44)

in which the membrane has original (unstressed) length L0 and is discretized into n segments, and
MP is the structure nodal mass:

MP =�0s
L0

n
(45)

in which �0s is the original linear density of the structure.
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Furthermore, considering the relative densities of the fluid and the structure, the ratio

M= �0s c

�c2
(46)

in this work is set to 2.0. Since gravitational effects are neglected, the linear density of the structure
will not affect the final equilibrium shape of the membrane, but it will govern its motion over time
towards this shape.

For the fluid solver, a non-dimensional timestep of 0.001 is combined with a pressure relaxation
factor of 0.8 (Equation (30)) and a velocity relaxation factor of 0.8 (Equation (27)). In the mesh
moving model, a combination of CT=0.1 (Equation (35)) and CS=0.001 (Equations (36a) and
(36b)) is used, along with �m =0.25 and �m =0.9 (Equation (37)). These values are arrived at by
trial and error to achieve a stable computation.

The simulations are run until changes in the lift and drag forces on the membrane have reached
steady values, which in general occurs after 35 non-dimensional seconds, although each case is
judged individually.

3.2.1. Mesh dependency test. To test the dependency of the results on the fineness of the mesh,
simulations are carried out having 100, 200 and 400 structural segments on the membrane. Since
the fluid mesh is body fitted to the structure, this also governs the fineness of the fluid mesh in
the vicinity of the structure. Figure 8 shows the fluid mesh for the case of 100 segments on the
membrane. A zone of mesh refinement is generated by seeding mesh nodes along a line projected
upstream of the leading edge for a distance of 10% of the chord length c, and downstream for a
distance of 50% of c.

The distribution of elasticity in the structure between local and global effects is adjusted to
take into account the reduction in local segment length according to Equation (32) since � is
dependent on the structure discretization n as previously described. The membrane has an EA
of 2.7e8 resulting in �=15 (Equation (41)). The evolution over time of the drag and lift forces

Figure 8. Computational mesh with 100 segments on the membrane surface.
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Figure 9. Time history of drag coefficient for �=15 membranes, 100,200 and 400
segments on the membrane surface.
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Figure 10. Time history of lift coefficient for �=15 membranes, 100,200 and 400
segments on the membrane surface.

felt by the membrane are shown in Figures 9 and 10, respectively. Drag is the force felt by the
membrane in the global x-direction and lift acts in the global y-direction (see Figure 7).

It can be seen from Figure 9 that the total drag is not mesh independent at this stage, although
mesh convergence is demonstrated in that the change in drag coefficient reduces as the mesh
becomes finer. If we consider the forces that make up this drag force, we can identify the part
of the model most affected by the mesh refinement, as demonstrated in Figure 11. It can be
seen that the pressure drag is almost identical in each of the three cases and that the difference
in drag coefficient demonstrated in Figure 9 is almost entirely due to the difference in viscous
drag between the three cases. It is to be expected that the viscous drag dominates the pressure
component since the structure surface area is predominantly aligned with the flow direction. Since
calculation of viscous stresses relies on the evaluation of velocity gradients, it is clear here that
differences in drag between the cases are due to increasing accuracy of velocity gradient modelling
near the fluid–structure interface. This is to be expected considering that the more fine the mesh,
the more computational points are clustered in the boundary layer region in the direction normal
to the membrane surface, and thus the more accurate the reconstruction of the velocity profile (and
hence the velocity gradient and rate of change of gradient) in this direction. The same effect is
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Figure 11. Time history of drag force viscous and pressure components for �=15 membranes, 100,200
and 400 segments on the membrane surface (legend as Figure 10).
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Figure 12. Membrane profile at non-dimensional t=35, for �=15 membranes, 100,200 and
400 segments on the membrane surface.

demonstrated in the results for lift coefficient when the viscous component is inspected; however,
since the lift force is dominated by the pressure contribution, the total lift coefficient remains
largely unchanged as shown in Figure 10.

Considering the steady shape that the membrane adopts, Figure 12 plots the membrane profile
in each case at non-dimensional t=35, in which the coordinates of the nodes of the membrane
have been transformed into local coordinates with local x aligned with the chord of the membrane
and local y perpendicular to it (see Figure 7). The figure shows that only very slight differences are
found between different cases, and therefore the differences in overall drag felt by the membrane are
due to differences in the forces at the fluid–structure interface, rather than differences in geometry
of the surface. Pressure difference between the top and bottom surface is the primary driver of
shape changes in the membrane, and therefore, since pressure components of the aerodynamic
forces are very similar across the three cases, it is to be expected that the shapes adopted by the
membranes will be very similar also, as is the case. This supports the argument that differences
in the overall drag on the membrane is due to the accuracy of velocity gradient reconstruction in
the boundary layer.

For computational efficiency, the 100-segment model is taken forward to investigate other
membranes. Although the mesh effects are obviously present, the errors are due to predictable
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Table I. Elastic stiffness and damping parameters of five membranes.

Case 1 2 3 4 5

� 4.0 6.0 7.9 11.0 15.0
EA 5.12e6 1.73e7 4.00e7 1.07e8 2.70e8
� 64.0 117.6 178.9 291.9 464.6
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Figure 13. Membrane profiles at non-dimensional time t=35 for membranes with varying elastic stiffness.
Comparison with Shyy and Smith [8].

effects, and comparison between different membrane properties will still be achievable since the
mesh effect will be comparable across all cases using the same mesh and flow at the same Reynolds
number.

3.2.2. Membrane elasticity investigation. As presented in Table I, five membranes having different
elastic stiffness are modelled. Again the angle of attack is 4◦ and the Reynolds number is 4×103.
The computational parameters are those used in the previous test cases.

The membrane profiles at non-dimensional time t=35 in local coordinates (see in Figure 7)
are shown in Figure 13 (note that the scale in the y′-direction is magnified with respect to that
in the x ′-direction for clarity). As expected, the lower the elastic stiffness of the membrane, the
more pronounced the curved shape that the membrane adopts. The shapes also show an asymmetry
since the point of maximum normal displacement (maximum height) is upstream of the chord
midpoint. This effect becomes more pronounced as the membrane stiffness is increased. Also
plotted on Figure 13 is the point of maximum normal displacement for the same test case with
�=7.9 presented by Shyy and Smith [8], which shows excellent agreement. Figure 14 shows the
maximum normal displacement (maximum height) for each non-dimensional � value tested. It is
clear that an inverse relationship exists between membrane elasticity and height of the equilibrium
shape, as expected. The results again agree very well with the data of Shyy and Smith [8].

Considering the aerodynamic forces on the steady membrane shapes, Figure 15 shows the
relationship between the maximum normal displacement of the membrane and the drag and lift
performance of this shape in each case. The data from Shyy and Smith [8] is again included
for comparison, along with an analysis, using the present method, of the flow around a rigid flat
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Figure 15. Variation of drag and lift coefficients with non-dimensionalized maximum normal displacement
of the membrane shape. Comparison with Shyy and Smith [8].

plate at the same angle of attack and free stream velocity (i.e. corresponding to an infinitely stiff
membrane). The data points have been connected with straight lines for clarity. It is clear that for
the lower profile membranes, increasing the height of the curved shape (for example, by reducing
the elastic stiffness) has the effect of increasing the lift forces on the surface much more quickly
than the drag forces. However, as the height of the membrane is increased further, it can be seen
that the rate of increase in drag increases, while the rate of increase in lift decreases. This is in
keeping with classical aerofoil performance data if we consider the effects of membrane height
to be equivalent to those of the angle of attack of an aerofoil. Both lift and drag increase as the
angle of attack is increased, and once the boundary layer separates from the aerofoil surface and
the region of separated flow grows in size, the rate of increase of lift decreases, while the rate of
increase of drag increases.

It is clear from Figure 15 that the present results for lift forces agree much more closely with
the data of Shyy and Smith [8] than those for drag. This is in keeping with the observations made
earlier concerning the results of the mesh dependency test; since the mesh used here has 100 fluid
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Figure 16. Time history of drag coefficient for membranes with varying elastic stiffness.
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Figure 17. Time history of lift coefficient for membranes with varying elastic stiffness.

elements on the membrane surface, it is to be expected that a discrepancy in overall drag forces
will result, while the lift forces will be significantly more accurate.

The time histories of the drag and lift coefficients are presented in Figures 16 and 17, respectively.
It can be seen that, the lower the elastic stiffness of the membrane, the higher both the drag and
lift forces on the resulting steady form. It can also be seen that the lower the elastic stiffness of
the membrane, the longer the membrane takes to adopt its final steady shape. Furthermore, clear
oscillations can be observed in both lift and drag in all five cases, and both the time period and
the magnitude of these oscillations reduce as the stiffness reduces.

Figures 16 and 17 also show that the oscillations in drag and lift forces become more complex,
as the stiffness of the membrane reduces. This suggests that the lower elasticity membranes support
more complex superimposed oscillations for longer periods of time than the stiffer membranes;
the stiffer membranes appear overall more efficient at damping out vibrations. In fact it can be
seen that the membranes in Case 1 and to a lesser extent Case 2 have not yet settled into a stable
shape. This will be examined further in the following discussions.

A further point of interest that could offer insight into this behaviour can be seen from considering
the motion of the midpoint of the membrane over time in each case. The relative magnitude of
the displacements of the midpoint of the membranes over time in local x ′ and local y′ is shown in
Figure 18, in which the x ′ displacement is described as a percentage of the y′ displacement at a
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percentage of displacement in local y, for membranes with varying elastic stiffness. Legend as Figure 17.
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Figure 19. (a) and (b) Mode shapes of vibration.

given time instant. It can be seen that in the most flexible case. Case 1, the membrane oscillations
along the chord are larger with respect to the membrane oscillations normal to the chord. The
relative magnitude of the x ′ oscillations decreases as the membrane stiffness increases.

The mode of oscillation of an elastic arch corresponding to a midpoint displacement only
in y′ is the symmetric extensional mode shown in Figure 19(a). The mode of oscillation of
an arch corresponding to a midpoint displacement only in x ′ is the asymmetrical inextensional
mode shown in Figure 19(b). It is therefore likely that the motion of the less stiff membranes is
tending towards mode (b), while the stiffer membranes are tending towards mode (a). The less
stiff membranes present a greater height to the oncoming flow and therefore experience a greater
net pressure force in the local x ′-direction, and also create a larger wake which could induce the
asymmetrical oscillations. The stiffer membranes present a smaller height and therefore experience
a less significant net pressure force in this direction. Furthermore, the asymmetrical mode (b)
involves no stretching of the membrane, and therefore the membrane can deform in this mode
without inducing internal elastic forces. The symmetrical mode (a) involves elastic stretching of the
membrane and therefore also internal damping of its motion, which supports the observation that
the more stiff the membrane, the quicker the oscillations decay. For the more flexible membranes,
when the membrane height is sufficiently high to observe the asymmetrical mode (b) displacements,
the oscillation persists for a much greater period of time since no internal damping is induced.

It can be seen for Case 1 that the membrane does not appear to settle into a steady shape for
a considerably longer period of time than all the other tests. The lift and drag coefficients for
Case 1 up to non-dimensional time t=200 are shown in Figure 20, which shows clear sustained
oscillations in the aerodynamic coefficients. Although the oscillations in lift and drag do appear to
be slowly reducing in amplitude, it is not clear if the simulation is converging to a stable state or if
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Figure 20. Time history of lift and drag coefficients on membrane Case 1, �=4.0.

a steady oscillation will result. These oscillations could correspond to the oscillations seen in the
other test cases as the membrane moves towards its steady shape; however, in Cases 3–5 it is clear
that the oscillations in the membrane are eventually damped out by the structure and the fluid after
a non-dimensional time period between 35 and 55, and a steady shape results. Alternatively these
sustained oscillations could be an indication of a more complex interaction behaviour between the
membrane and the flow in this most flexible case. Closer inspection of the position of the midpoint
of the Case 1 membrane over time shows that the oscillations in x ′ and y′ are in phase with each
other, and also in phase with the oscillations in both drag and lift coefficients.

Case 1 presents the most pronounced membrane profile to the flow as shown in Figure 13, and
inspection of the velocity vectors near the trailing edge shows the existence of a pair of vortices
here, as shown in Figure 21. Inspection of the wake over time shows that the vortices do not
appear to be shed into the flow, but remain attached to the trailing edge of the membrane. Hence,
to investigate the oscillations in the aerodynamic coefficients further, an average membrane shape
(the shape found at a time instant corresponding to the mean midpoint displacements over the
period t=120 to 140) is analysed as a rigid structure, to see whether the trailing vortices are stable
or are shed into the flow in the equivalent case with no fluid–structure interaction.

As shown in Figure 22, both the lift and drag coefficients for this rigid curved shape demonstrate
a small oscillation in value. After running the simulation to a non-dimensional time t=25, no
discernible decay in the oscillations in drag and lift was present, i.e. the oscillations are stable. To
verify that this is a flow-induced effect, rather than a numerical error, the flow about the same rigid
shape was analysed at a much lower velocity giving a Reynolds number of 40. The evolution of
the drag and lift coefficients in this case is shown in Figure 23, respectively. Since no oscillation
is found here, this suggests that the oscillation shown in Figure 22 is due to slight wobbling of
the vortices in the wake.

In both the flexible and rigid cases, shedding of vortices into the wake does not occur; the
vortices remain attached and the observed oscillation is due to their interaction. On comparison,
both cases demonstrate oscillations about the same mean value for both lift and drag coefficients;
0.860 and 0.123, respectively. However, while the flexible case oscillation in drag is ±0.8% and
lift ±0.5%, in the rigid case the corresponding magnitudes are ±0.003 and ±0.02%, respectively.
Furthermore, the flexible case coefficients both oscillate at a non-dimensional frequency of 0.2Hz,
while in the rigid case the non-dimensional frequency is 1.9Hz.
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Figure 21. Velocity vector plot for Case 1, �=4, at non-dimensional t=35 showing
attached vortices at the trailing edge.
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Figure 22. Time history of lift and drag coefficients for rigid shape corresponding to mean Case 1 profile.
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Figure 23. Time history of lift and drag coefficients for rigid shape corresponding
to mean Case 1 profile, Re=40.
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In the flexible case the magnitude of oscillation in drag and lift forces is considerably larger
than that observed in the rigid case and the frequency of oscillation is an order of magnitude lower,
demonstrating that the flexible nature of the membrane is causing a significant interactive effect to
occur between the membrane shape and the flow around it, in particular in the wake. The relatively
small unsteadiness observed in the rigid case is greatly magnified in the coupled flexible system.

The computational time required for the calculations varies considerably from case to case, and
during each simulation, since it depends on the number of iterations required to converge both the
fluid and mesh solutions. For the fluid, the number of iterations to cause convergence will depend,
for example, on the rate of change of the flow field from one timestep to the next. For the mesh,
larger boundary motions will require more iterations to ‘smooth’ the interior mesh nodes. It is
therefore not possible to generalize the increased computation required in a coupled fluid–structure
simulation compared with the one in which the structure remains fixed. However, as a comparison,
we can consider the test cases of the least stiff membrane, analysed once with a flexible shape and
once with a rigid shape as previously described, which use the same mesh and the same timestep.
Averaging the computational time over the simulations, which were carried out on a desktop pc,
the rigid case requires 1.84×104 s real time to analyse 1 non-dimensional second, and the flexible
case requires 2.08×104 s, an increase of 13%.

4. CONCLUSION

Amethod has been presented which is designed for application to fluid–flexible structure interaction
problems. Unstructured triangular meshes are used with the collocated finite volume method to
discretize the Navier–Stokes equations, taking into account the effects of grid non-orthogonality,
and the power law interpolation scheme is used for stability. The pressure solution is found using
the SIMPLE algorithm. A new membrane elasticity model has been presented for the discretization
of the membrane structure, which allows for global and local elastic effects and includes damping.

The method has successfully been applied to the investigation of the behaviour of two-
dimensional two-pinned membrane airfoils of varying stiffness, in an oncoming flow of Reynolds
number 4000. It is clear that pressure difference across the membrane is the primary lift generation
mechanism, while viscous stresses dominate the drag effect. This highlights the need for a fully
viscous flow solver to model these systems in order to accurately predict the drag forces. The
importance of accurately modelling the velocity gradient in the vicinity of the structure is also
demonstrated. Good agreement with published data for the stable membrane shape and lift forces
is achieved, while errors in drag prediction are shown to be highly dependent on mesh spacing in
the boundary layer normal to the membrane surface.

As expected, the stiffer the membrane, the lower the steady profile shape adopted. Considering
the unsteady behaviour towards a steady equilibrium shape, the stiffer the membrane, the quicker
the shape will be adopted, the more the membrane oscillations will be orientated in the local
y-direction and the higher the frequency of these oscillations. The lower stiffness membranes
exhibit sustained oscillations in shape, with a more significant displacement component
along the chord direction indicating a tendency towards an asymmetrical inextensional
vibration mode.

The method has successfully shed light on situations where a stable shape is not adopted, and
can be used to predict membrane oscillations, including unsteady interactions with the wake, and
to study in detail the modes of vibration.
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